
Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy
of nanoscopic platelets

M. A. Itskovsky,1 H. Cohen,2 and T. Maniv1

1Schulich Faculty of Chemistry, Technion-IIT, 32000 Haifa, Israel
2Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel

�Received 11 February 2008; revised manuscript received 10 May 2008; published 21 July 2008�

A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near
nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from
the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by
the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated
for metallic �silver and gold� and insulating �SiO2 and MgO� nanoplatelets, radiative features are revealed
above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss prob-
ability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the
vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited
nanostructures.
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I. INTRODUCTION

A powerful technique for investigating electromagnetic
�EM� field distribution around nanostructures is provided by
very fast �relativistic� electron �e� beams, with typical lateral
resolution on an atomic scale, available in scanning transmis-
sion electron microscopy �STEM�.1–6 As discussed previ-
ously, when the e beam is restricted to the vacuum near a
selected nanoparticle,1,2 its EM interaction with surface plas-
mons or surface-plasmon polaritons �SPPs� �Ref. 7� is remi-
niscent of the near-field interaction4 of subwavelength opti-
cal probes. Several works have recently studied realizations
of Cherenkov radiation excitation within various dielectric
media by e beams moving in near-field vacuum zones.8–11 In
all the latter works, the energy-loss processes were described
within a simple classical model in which the fast electron is
assumed to move with a constant velocity along a straight-
line trajectory near a finite dielectric medium such that the
energy-loss intensity can be obtained from the force exerted
on the electron due to its self-induced electric field through
the nearby dielectric medium. The great simplification
achieved by this approach amounts to reducing the full scat-
tering problem at hand to a problem of finding the EM field
induced by the e beam in the vacuum around the dielectric
medium. The resulting EM field can include Cherenkov-type
radiative components around the e beam which are restricted,
however, to propagation within the interior of the dielectric
medium.

In this paper we present a quantum-mechanical theory for
the inelastic scattering of a relativistic highly focused e beam
traveling near nanoparticles in a “nontouching” aloof
configuration.1,2 We show that the electron wave scattering
by nanoparticle edges along the beam axis switches on
Cherenkov-type radiation channels which extend into the
vacuum away from the nanoparticle. The resulting coupling
between the electron and the nanoparticle is found to dra-
matically enhance various radiative channels in the loss
spectrum.

To illustrate our main points, we consider here a simple
model �see Fig. 1� where the e beam is propagated in the

vacuum along a wide face of a rectangular nanoplatelet �ori-
ented, e.g., in the x-y plane�, and a surface or guided wave
excited by the electron is propagated with a wave number kx
along the beam axis. The spatially sensitive nature of the
corresponding electron-energy-loss process arises from the
exponential dependence e−2K�b of the EM interaction be-
tween the e beam and the platelet on the impact parameter b.
The extinction coefficient K�=�K2− �� /c�2, with K2=kx

2+ky
2,

determines the tail of the evanescent field in the vacuum for
values of K outside the light cone, i.e., for K�� /c. Inside
the light cone, i.e., for K�� /c, K� is purely imaginary and
the corresponding interaction becomes spatially oscillating,
allowing the electron to exchange photons with the particle
far away into the vacuum. Two mechanisms which can bring
K into the light cone are illustrated in Fig. 2, both involving
momentum transfer from the e-beam longitudinal motion: �1�
to the e-beam transverse motions �by action of the focusing
EM lenses� and �2� to the platelet center-of-mass motion �by
scattering through the beam-platelet interaction�. This strik-
ing effect has been overlooked in the recent literature on
STEM electron-energy-loss spectroscopy �EELS�, since the
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FIG. 1. �Color online� A schematic illustration of the scattering
configuration �e beam 1� used in our calculations. a� ,b� ,c� stand
for the platelet half sides along the x ,y ,z directions, respectively.
Another configuration �e beam 2�, discussed in Sec. IV in compari-
son with that in Ref. 12, where the e beam is parallel to an edge of
the platelet, is also shown.
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excitation by an electron moving in the vacuum with a clas-
sical velocity v is restricted to a constant longitudinal wave
number kx=� /v�� /c, implying EM coupling to the nano-
particle which is restricted to the evanescent tail near the
surface.

Our model calculation is applied to two types of nano-
scopic platelets, conducting platelets made of silver or gold
and dielectric platelets made of insulators such as silica or
magnesia. For both types of nanoparticles, we find signifi-
cant loss signals in the low-energy range of the spectrum,
where the electron-hole excitation probability is either zero
�for the insulator� or very small �for the metals�, exhibiting
far-field �radiative� characteristics. In particular, specific SPP
modes of the silver platelet, which penetrate into the light
cone, can be excited by the external e beam, leading to fea-
tures in the EEL spectrum which decay weakly with the
beam-platelet distance.

II. MODEL AND FORMULATION

Following Ref. 4, the focused e beam is described here as
a one-dimensional wave, propagating along the x axis, while
in the transverse �y-z� directions it is described by a wave-
packet localized within a smoothly converging cross section
along the beam axis, whose shape is assumed to be squared
for the sake of simplicity. The corresponding Green’s func-
tion for the noninteracting focused e beam may be therefore
written in the general form

Ge
�0��r�,r��;t� =

1

2L
�
px

eiqx�x−x���
q� tr

ei�px,ptr
t/��q� tr

�y,z;x�

��q� tr

� �y�,z�;x�� , �1�

where px=�qx is the longitudinal �along the beam axis� elec-
tron momentum; �px,ptr

=�px
2c2+m0

2c4+c2ptr
2 is its total rela-

tivistic energy eigenvalue, with m0 as the electron rest mass;
p� tr=�q� tr �q� tr= �qy ,qz�� is its transverse momentum; and
eiqxx�q� tr

�y ,z ;x� is the corresponding e-beam eigenfunction
�see Appendix A�.

The EM interaction between the e beam and the platelet
may be described effectively by the Hamiltonian

ĤEM�r�,�s�� 	 − e	�r�,�s�� − e
p̂x

mc
Ax�r�,�s�� , �2�

where 	 and Ax are the scalar and x component of the EM
four-vector potential, respectively, r� is the electron position
vector, �s� is a collective symbol for the position vectors of
the platelet charges, and m=m0 /�1− �v /c�2 is the dynamic
electron mass.

To first order of the perturbation theory with respect to the

EM interaction Hamiltonian ĤEM, the probability for the e
beam to go, during the time interval 
, from initial to final
eigenstates when the platelet initial state is the ground state
�0 is

�
�f


Ke�i→f�,�0→�f

�1� �
�
2 = � 1

�
�2

�
�f


���px
i ,q� tr

i + ��0
,�px

f ,q� tr
f + ��f

;
�
2

�
1

2L



−L

L

dx�
 dy�
 dz��q� tr
f �y�,z�;x���q� tr

i
� �y�,z�;x��e−iqx

i x���0
ĤEM�r���
� f�eiqx
fx�

�
1

2L



−L

L

dx
 dy
 dz�q� tr
f

� �y,z;x��q� tr
i �y,z;x�e−iqx

fx�� f
ĤEM�r��
�0�eiqx
i x, �3�

where the sum is over the platelet final states � f and ��� ,�� ;
�� exp�i
��−���/��−1
�i��−���/�� .

In the macroscopic time limit 
→
, 
��� ,�� ;
�
2→2��
���−���=2
 Re �0

dt exp�it��−��� /��, and so the rate of change

in the scattering probability of the e beam, Re�i→f��
d
d
��f


Ke�i→f�,�0→�f

�1� �
�
2, as 
→
 is given by
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FIG. 2. �Color online� Scattering kinematics which enables
platelet excitation wave numbers within the light cone. q� i and q� f are
the initial and final e-beam wave vectors, respectively, and kx and kx�
are, respectively, the longitudinal wave-vector components of the
platelet internal excitation and its recoil.
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dx
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f �y�,z�;x���q� tr

i
� �y�,z�;x��
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 dz�q� tr
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� �y,z;x��q� tr
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e−iqx
i x�ĤEM�r���eiqx

fx�
� f��� f
e−iqx
fxĤEM�r��eiqx

i x
�0�� , �4�

where the inclusion of all terms under the real part symbol is justified by the reality of the total expression written after the
square brackets.

Using the relation e−iqx
fxĤEM�r��eiqx

i x=ei�qx
i −qx

f �xĤEM
px

f

�r��, with ĤEM
px

f

�r����−e��	̂�r��−
px

f

mc Âx�r���, the rate of change in the prob-
ability for the scattering of the e beam can be rewritten in the form

Re�i→f� = �
q� tr

i ,q� tr
f

e−���qtr
i �2/2m0

4�

�
Re� 1

2L



−L

L

dx�e−i�qxx� 1
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−L

L

dxei�qxx
 dy�
 dz��q� tr
f �y�,z�;x���q� tr

i
� �y�,z�;x��

�
 dy
 dz�q� tr
f

� �y,z;x��q� tr
i �y,z;x�


0




dtei�t�ĤEM
px

i

�x�,y�,z�;t�ĤEM
px

f

�x,y,z;0��� , �5�

where

�qx � �qx
i − qx

f� 	 ��/v� + ���qtr
f �2 − �qtr

i �2�/2mv �6�

is the longitudinal momentum transfer of the e beam �see
Appendix A�, q� tr

i and q� tr
f are the e-beam asymptotic trans-

verse momenta, initial and final, respectively, and ��
���px

i ,q� tr
i −�px

f ,q� tr
i � is its energy loss �see Fig. 2�. Note that the

width �−1 of the Gaussian distribution function, is introduced
in Eq. �5� to account for the high transverse-energy cutoff
caused to the e beam by the objective aperture. It is related to
the length L of the region around the beam focal plane used

in our model as a normalization factor for the electron wave
functions.

The interaction potential HEM�x ,y ,z� between the platelet
and an external electron at �x ,y ,z� is nearly independent of x
for 
x
�a� and decays to zero at least as quickly as 1 /x2 for

x
�a� �see, e.g., Ref. 13�. Under these circumstances the
limits of the integrations over x and x� in the above expres-
sion may be set at −a� and a�, rather than at −L and L. The

correlation function �ĤEM
px

i

�x� ,y� ,z� ; t�ĤEM
px

f

�x ,y ,z ;0�� can be
expressed in terms of the relevant components of the four-
tensor photon Green’s function D�,��r�� ,r� ; t�, �, �=0,1 ,2 ,3
�↔ct ,x ,y ,z� as

�ĤEM
px

i

�x�,y�,z�;t�ĤEM
px

f

�x,y,z;0�� = i�D0,0�r��,r�;t� +
px

i

mc
D0,1�r��,r�;t� +

px
f

mc
D1,0�r��,r�;t� +

px
f px

i

�mc�2D1,1�r��,r�;t��, t � 0. �7�

For the sake of simplicity, we may assume translational invariance of the platelet dielectric properties in the x-y plane; that
is, take D�,��r�� ,r� ; t�=D�,��x−x� ,y−y� ,z� ,z ; t�. For an impact parameter b smaller than the platelet sides along the x and y axes
�i.e., b�2a� ,2b��, this assumption may be justified, though it is inconsistent with the breakdown of momentum conservation
in the beam-platelet scattering event considered here �see a more detailed discussion in Sec. III�.

Substituting into Eq. �5� for Re�i→f� and rearranging the integrations, we find that

Re�i→f� = −
4�e2

�
�

q� tr
i ,q� tr

f

e−���qtr
i �2/2m0 Im�
 dkx
 dky

1

2L



−a�

a�

dx�e−i��qx−kx�x�
 dz�
 dy�eikyy��q� tr
f �y�,z�;x���q� tr

i
� �y�,z�;x��

�
1

2L



−a�

a�

dxei��qx−kx�x
 dz
 dye−ikyy�q� tr
f

� �y,z;x��q� tr
i �y,z;x�Dpx

f ,px
i
�kx,ky,�;z�,z�� ,

where

Dpx
f ,px

i
�kx,ky,�;z�,z� = 


0




dteit�Dpx
f ,px

i
�kx,ky ;z�,z;t� ,
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Dpx
f ,px

i
�kx,ky ;z�,z;t� = D0,0�kx,ky ;z�,z;t� +

px
i

mc
D0,1�kx,ky ;z�,z;t� +

px
f

mc
D1,0�kx,ky ;z�,z;t� +

px
f px

i

�mc�2D1,1�kx,ky ;z�,z;t� , �8�

and D�,��kx ,ky ;z� ,z ; t� is the spatial Fourier transform of D�,��x−x� ,y−y� ,z� ,z ; t� with wave vector K� = �kx ,ky�.
Now, the four-tensor photon propagator in the vacuum �i.e., at z, z��0� has the form14 �see also Appendix B�

D�,��kx,ky,�;z�,z� =
��

2�K�
���,�e−K�
z�−z
 − r�,��kx,ky,��eK��z�+z�� , �9�

in which the relevant part is associated only with the second term within the square brackets �i.e., that associated with the
retarded image potential of the e beam�. Using this expression and recalling that 1 / 
K�
 is typically much larger than the beam
transverse dimension, so that the extreme confinement of the e-beam wave functions �q� tr

i,f under the integrals over z and z�
restrict their values to a narrow region near z�=z=−b, we have

Re�i→f� 	
4�e2

�
�

q� tr
i ,q� tr

f

e−���qtr
i �2/2m0 Im�
 dkx
 dky

e−2K�b

2�K� rf ,i�kx,ky,��

�
1

2L



−a�

a�

dx�e−i��qx−kx�x�J��q� tr
f ,qtr

i ;ky,K
�;x��

1

2L



−a�

a�

dxei��qx−kx�xJ�q� tr
f ,qtr

i ;ky,K
�;x�� , �10�

where

rf ,i�kx,ky,�� = r0,0�kx,ky,�� +
�qx

i

mc
r0,1�kx,ky,�� +

�qx
f

mc
r1,0�kx,ky,�� +

�2qx
fqx

i

�mc�2 r1,1�kx,ky,�� �11�

and

J�q� tr
f ,qtr

i ;ky,K
�;x� � 
 dz
 dye−ikyy�q� tr

f
� �y,z;x��qtr

i �y,z;x� . �12�

Finally, denoting

I�q� tr
f ;q� tr

i ;ky,K
�;��qx − kx�� �

1

2L



−a�

a�

dxei��qx−kx�xJ�q� tr
f ,qtr

i ;ky,K
�;x� , �13�

the scattering rate is rewritten as

Re�i→f� =
2e2

�

 dkx
 dky Im� rf ,i�kx,ky,��

K�
e−2K�b� �

q� tr
i ,q� tr

f

e−���qtr
i �2/2m0
I�q� tr

f ;q� tr
i ;ky,K

�;��qx − kx��
2. �14�

In principle, due to the finite size of the platelet, the ex-
citation wave numbers kx and ky in Eq. �14� are quantized.
Practically, however, for the platelet’s lengths of interest �i.e.,
about 100 nm�, additional scattering processes �by structural
imperfections, impurities, phonons, and nonideal surfaces�
should all smear the corresponding fine mesh ��kx�� /a�

�10−3A−1� into a continuum.

III. “CLASSICAL” APPROXIMATION AND BEYOND

The theory developed in Sec. II can be further simplified
without losing its main physical content by employing sev-
eral approximations. In the long-wavelength limit discussed
in Ref. 14, we find that �see Appendix B�

Im�e−2K�brf ,i�k�,��/K��

	 Im���K�/k2�fe + ��v/c�2 − ��/ck�2�fo/K��e−2K�b� ,

�15�

where

fe = ��2K�2 − Q2�/De
+De

−, fo = �K�2 − Q2�/Do
+Do

−, �16�

De
+ = �K� + Q tanh�Qc��, De

− = �K� + Q coth�Qc�� ,

Do
+ = K� + Q tanh�Qc��, Do

− = K� + Q coth�Qc�� , �17�

Q=�K2− �� /c�2����, and ���� is the local bulk dielectric
function of the platelet. In the limit of a semi-infinite me-
dium, the resulting expression reduces �see Appendix B� to
the surface dielectric-response function obtained in Ref. 15
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by using Maxwell’s equations with macroscopic boundary
conditions.

The standard classical approximation for the loss
function15 is obtained from Eq. �14� by making the following
assumptions: �1� the e-beam transverse momentum distribu-
tion function J�q� tr

f ,q� tr
i ;ky ,K� ;x�=J is a constant, that is,

equivalent to a � function in the corresponding real-space
transverse coordinates; �2� the contribution of the transverse
energy to the longitudinal momentum transfer �qx �see Eq.
�6�� can be neglected; and �3� the effective particle size a�,
appearing as an integration limit along the beam axis, is in-
finite. Assumption 3, in conjunction with assumption 1,
yields the conservation of longitudinal momentum, i.e.,
�qx−kx=0, which together with assumption 2 imposes the
fixed condition kx= �� /v�.

It is interesting to note that usually assumption 2 is
not strictly satisfied since the contribution of the transverse
energy to �qx :���qtr

f �2− �qtr
i �2� /2mv	qtr�qtr / �mv /��

� �qtr
2 /qx

i can be as large in magnitude as � /v �see Fig. 2�.
As an example, at ���10 eV, � /v�0.05 nm−1, whereas
the transverse-beam–wave-number uncertainty 
�qtr
�qtr
�2� / l �with a typical value of l�0.6 nm for the beam
radius� is 10 nm−1, so that for �i=100 keV, where qx

i

�1500 nm−1, qtr
2 /qx

i �0.07 nm−1, which is comparable with
� /v.

In the present paper, we focus on the most interesting
violation of the “classical” approximation outlined above,
allowing a� to be a finite length, which reflects an effective
range of the actual beam-particle interaction along the beam
axis. Consequently the longitudinal momentum distribution
around �qx−kx=0, defined by the integral in Eq. �13�, is
smeared and many wave numbers kx inside the light cone
start contributing to the loss rate, Eq. �14�.

The condition for the smearing to be significant is � /a�

�� /v, so that typically for frequencies � in the visible
range, a� should be smaller than 200 nm. Nanoplatelets of
those lengths should dramatically enhance radiative excita-
tions by the e beam, previously overlooked in the literature;
see e.g., Ref. 16, where it was argued that recoil effects in
STEM should be negligible for valence electron excitations.
Recoil is only a classical remnant of the present effect and of
less general appearance. In particular, it vanishes for large
media, such as the porous film investigated in Ref. 8, for
which �if made sufficiently thin� the quantum-mechanical
momentum uncertainty along the e-beam axis remains sig-
nificant.

It should be stressed that, for the sake of simplicity, the
platelet dielectric-response function is calculated here by as-
suming its wide faces to be infinite. Our main conclusions
are not expected to change qualitatively by this assumption,
however, since the breakdown of translation invariance in the
dielectric-response function should further enhance all radia-
tive channels.

Another approximation assumed in the above formalism
concerns the cutoff at x= �a� of the integral in Eq. �13�.
Evidently, the sharp cutoff does not describe properly the
smooth attenuation of the e-beam-platelet interaction at 
x

values larger than a�. To improve this approximation, we use
in our actual calculations an equivalent Gaussian distribution
function, that is,



−a�

a�

dxei��qx−kx�xJ�q� tr
f ,qtr

i ;ky,K
�;x�

→ J

−





dxei��qx−kx�xe−�x2/2a�2
. �18�

In any event, the exact form of the corresponding distribu-
tion function is of no great importance for the main purpose
of our present paper.

IV. RESULTS AND DISCUSSIONS

A. Silver and gold nanoplatelets

As a first example, we calculate the EEL function of a
100-nm-long silver and gold platelets for an external 100
keV e beam at various impact parameters �see Figs. 2 and 3�.
To analyze the various SPP resonances, one may consider the
zeros of the denominator of the extraordinary wave ampli-
tude fe in Eq. �15� in the complex K plane. With the experi-
mental optical dielectric function ����, for silver17 the result-
ing dispersion relation �Fig. 4� exhibits a rather flat branch of
��Re K� inside the light cone, which can be attributed to
radiative SPP, seen as a mirror image of the usual nonradia-
tive SP dispersion curve. The sector of ��Re K� connecting
the two branches across the light line has a vanishing nega-
tive slope, where Im K���� Im ���� has a sharp peak. The
sharp dip in the EEL spectrum just above the classical SP
frequency �at 3.8 eV� reflects these closely related features.

At slightly higher frequencies, the EEL signals exhibit a
pronounced rise due to the enhanced SPP density of states
associated with the flat radiative SPP branch. These peculiar
features are missing in the loss spectra of the gold platelet,
shown in Fig. 5.

The EEL intensity in this spectral region exhibits attenu-
ation with increasing impact parameter significantly weaker

0 2 4 6 8 10
ω(eV)
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E
E

L
(a
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.u

ni
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)

Ag

e−beam:

b=10nm
20nm

40nm

v/c=0.54

FIG. 3. �Color online� EEL spectra �solid lines� of a 100 keV e
beam propagating parallel to the x axis of a rectangular Ag platelet
�with half sides a�=50 nm along x and c�=10 nm along z; see Fig.
1� at impact parameters b=10, 20, and 40 nm above its wide x-y
face. The experimental optical dielectric function ���� for silver
�Ref. 17� has been exploited. The dashed lines represent spectra
calculated by the classical theory.
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than the corresponding attenuation of the main SP peak cal-
culated in the classical limit. The radiative nature of the
beam-particle coupling shown in Figs. 3 and 5 is even more
pronounced in the low-energy region below the main SP
peak, where the classically calculated signal drops to very
small values. Here our calculated EEL function exhibits a
pronounced broad band with linearly increasing intensity for
increasing frequency and almost no attenuation with increas-
ing impact parameter. These features are due to the fact that
the loss signal well below the main SP frequency is domi-
nated by the contribution from the ordinary wave amplitude
fo, appearing in Eq. �15�, which is singularly enhanced near
the light line �where K�→0�, and thus reflecting the nearly
pure �transverse� photonic nature of the excitations by the e
beam in this “classically forbidden” region.

The results of our calculations may be compared to the
experimental data reported in Ref. 18 for silver and gold
nanorods and ellipsoids. Figure 6 shows our calculated EEL
spectra for three silver platelets with c�=15 nm and a�

=10, 15, and 30 nm at impact parameter b=10 nm. The
shown curves may be compared to the spectrum in Ref. 18
obtained for a silver ellipsoid with a long half axis
��30 nm� and two short half axes ��15 nm� at impact pa-
rameter �10 nm above the ellipsoid wide face.

The two lower curves, particularly those corresponding to
a�=10 nm, exhibit good agreement with the relevant experi-
mental data. Specifically, in addition to the very good agree-
ment of the calculated main plasmon peak position
��3.45 eV� with the experimental one, the ratio ��2� of the
intensity of the main plasmon peak to that of the high-energy
broad peak and the extent and magnitude of the low-energy
tail shown in Fig. 6 are seen to agree pretty well with the
corresponding experimental results. In contrast a large inten-
sity ratio ��8� and a very small low-energy tail characterize
the classical curve shown in Fig. 6, both indicating the im-
portance of the quantum effects predicted by our theory.
Note that an important feature of our calculated spectra, the
large dip just above the main plasmon peak, which is missing
in the experimental data, is shown to develop only at rela-
tively large values of a� �i.e., for a��20 nm�.

B. Insulating nanoplatelets

The situation in the forbidden energy-gap region of semi-
conductors and insulators is in a sense an extreme case of the
effect demonstrated in the low-energy region in Fig. 3: The
EEL spectra shown in Fig. 7 are calculated for an external
100 keV e beam, propagating parallel to the x-y face of a
100-nm-long SiO2 platelet with half thickness c�=50 nm, at
different impact parameters b. The spectra reveal a pro-
nounced double-peak structure within the forbidden gap re-
gion, which does not decay with increasing b values. Strictly
speaking, this structure reduces to a single broad peak for
platelets of widths c��10 nm, reflecting a finite-size effect.
Similarly to the situation with the silver and gold platelets
well below the main SP peak, the strong radiative nature of
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FIG. 4. �Color online� SPP dispersion curves, ��Re K� and
��Im K�, in the complex K plane for silver in the same energy
range as in Fig. 3. The experimental optical dielectric function ����
for silver �Ref. 17� has been exploited.
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this feature arises from the ordinary wave amplitude fo, cor-
responding to the excitation of purely transverse EM waves,
polarized within the x-y plane, which totally dominates the
loss signal in the forbidden gap region. The spectra shown in
Fig. 7 may be compared to the results reported in Ref. 12 for
an electron moving parallel to a 90° SiO2 wedge at a distance
of 8.5 nm �see Fig. 1�. The pronounced radiative broad band
within the gap region, obtained in our calculation, dramati-
cally contrasts the vanishing loss signal shown in Fig. 4 for
an electron beam with the same velocity �v=0.54c� and
nearly the same impact parameter. The lack of far-field �ra-
diative� coupling between the external e beam and the dielec-
tric medium in the latter theoretical approach restricted the
fast beam to excitation, through near-field coupling, of EM
waves confined within the dielectric medium,8 similar to or-
dinary waveguide modes which can develop within a thin
SiO2 slab in the forbidden gap region, where Re ����	2
and Im ����→0. For an ideal planar geometry �as assumed

in our calculation of the dielectric-response function r�K� ,��,
the corresponding waveguide modes appear as extremely
narrow resonances which cannot be excited by an e beam
with �qx values outside the light cone due to the vanishingly
small dielectric damping, Im ����.

Such radiation excitations become possible for the non-
planar geometries studied in Refs. 8 and 12 even under the
rigid e-beam trajectory approximation exploited there �but
only above a threshold beam energy considerably higher than
100 keV� due to the translational symmetry-broken dielectric
media considered in their calculations. Yet, the correspond-
ing Cherenkov-type channels remain fundamentally different
from the ones we propose: The opening of scattering chan-
nels with wave numbers inside the light cone allows cou-

pling of the e beam to the continuum of EM modes which are
extended into the vacuum perpendicular to the platelet wide
face. The relative strength of the present radiative mecha-
nism may be further appreciated by noting the calculated
spectra near the sharp SiO2 wedge in Ref. 12, where in spite
of the geometrical enhancement of near-field Cherenkov
coupling, beam energies far above 100 keV were needed
there for “switching on” such channels.

Finally, it is instructive to compare our predicted loss
spectrum of an external 100 keV e beam propagating near a
MgO platelet with half sides a�=c�=50 nm at an impact
parameter b=2 nm �see Fig. 8� to the experimental data re-
ported in Ref. 19 for a MgO smoke cube of 100 nm size. The
overall agreement is good, including the occurrence, in both
the calculated spectrum and the experimental data, of a
broad, nonvanishing signal within the forbidden gap region,
which is missing in the classically calculated spectrum. In
this gap region, the calculated spectrum exhibits a structure
associated with the multiple reflection of the generated radia-
tion between the two parallel faces of the platelet perpen-
dicular to the z axis. This finite-size effect is peculiar to the
far-field radiative modes found in the present paper for plate-
lets confined in the direction along the e-beam axis and is
different from �though related to� the extremely sharp reso-
nances associated with the waveguide modes developed in
an “ideal” �i.e., wide laterally� planar dielectric thin film. The
classical approach applied to such an ideal film yields usu-
ally �i.e., except for extremely rare coincidences of the loss
energy with the resonant frequencies� null loss intensity,
whereas in our quantum calculations the continuous window
of wave numbers inside the light cone removes the stringent
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FIG. 7. �Color online� EEL spectra �solid lines� of a 100 keV e
beam propagating parallel to the x axis of a rectangular SiO2 plate-
let at distances b=2 and 8 nm above its wide �x-y� face. The platelet
half sides along the x and z axes are a�=50 nm and c�=50 nm,
respectively. Note the finite-size oscillations of the calculated loss
signal inside the forbidden energy gap with a period roughly pro-
portional to 1 /c�. The corresponding spectra �dashed lines� obtained
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close similarity of the classical spectrum for b=8 nm with the one
obtained in Ref. 12 for the same e-beam velocity at nearly the same
impact parameter parallel to a sharp wedge �see Fig. 1�.
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resonant conditions and allows the appearance of a signifi-
cant loss intensity in the entire gap region.

Quantitatively, the agreement between the experimental
MgO data and our calculated spectrum in the sub-band gap
region is limited. This may partially arise from inaccuracies
in the subtraction of the experimental elastic tail and also
from the sensitivity of the calculated data to smearing effects
acting on the nominally quantized excitation wave number.
Application of monochromated EELS to the MgO system
may be helpful in studying this discrepancy.

V. CONCLUSION

Applying a quantum-mechanical approach to the scatter-
ing problem of highly focused relativistic e beams near nano-
platelets, we have shown that Cherenkov-type radiation of
STEM e beams, discussed recently in the literature,8–10 has a
much broader scope than originally presented. Dramatic en-
hancements of radiative channels arise from the breakdown
of momentum conservation along the e-beam axis in the in-
elastic process due to scattering of the electron wave by the
nanoparticle edges. Further enhancements, realized due to
the extreme lateral confinement of the e beam and its asso-
ciated transverse momentum uncertainty,4 have not been
considered in detail here. The radiation predicted to be emit-
ted from both conducting and insulating nanoplatelets can be
generated at impact parameters larger than the evanescent
tail of the excited surface EM modes due to the oscillatory
distance dependence of the electron-platelet interaction for
momentum transfers within the light cone. Consequently,
this radiation should have a significant propagation compo-
nent perpendicular to its main direction along the e-beam
axis.

Large deviations from the classical EEL signal, due to
radiative interaction, are found to exist also at relatively
small impact parameters, which can be readily tested experi-
mentally. Their nature as arising from radiative interaction
may be confirmed experimentally by varying the impact pa-
rameter in a relatively small range due the strong �exponen-
tial� attenuation of the EEL signal associated with near-field
interaction at impact parameters in the range of 10 nm or so.
The signal surviving this sharp attenuation �i.e., at subwave-
length distances� is dominated by radiative interaction.

The results of our calculations for silver platelets seem to
agree pretty well with the experimental data reported in Ref.
18 for silver nanoellipsoids. Furthermore, experimental ob-
servation of loss signals within the forbidden energy gap of
MgO cubes of 100 nm size by Aizpurua et al.19 seems as
well to support our main prediction. Application of the the-
oretical framework used here to additional scattering and
nanoparticle configurations will enable detailed examination
of the predicted effects and interesting applications of the
focused beam spectroscopy in nanostructured arrays. Experi-
mental confirmation of the predicted radiative interaction
may lead to applications of fast, highly focused e beams as
sensitive tip detectors of radiation field around electronically
excited nanostructures.
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APPENDIX A

In this appendix we specialize our general model of the
focused e beam to allow a more detailed discussion of some
aspects of EELS experiments in STEM pertinent to the sub-
ject under study in this paper. We employ the relativistic
Schrödinger’s wave equation,

�− � �2

�y2 +
�2

�z2� −
�2

�x2���x,y,z� = �̃2��x,y,z� ,

�̃2 � �2/�2c2 − m0
2c2/�2,

subject to the boundary conditions

��x,y,z� = 0, for l�x� � y � 0

and, for l�x� − b � z � − b,

with l�x� = l0 + �
x
, � � 1. �A1�

Due to the small converging angle �, one may invoke the
Born-Oppenheimer approximation, ��x ,y ,z�=��x���y ,z ;x�,
in which the crossed derivatives �

�x��y ,z ;x� , �2

�x2 ��y ,z ;x� are
neglected, and the wave equation takes the approximate form

−
1

��y,z;x�� �2

�y2 +
�2

�z2���y,z;x� −
1

��x�
�2

�x2��x� = �̃2

subject to the boundary conditions, Eq. �A1�. Solutions for
the “slow” motion wave equation satisfying these boundary
conditions are �ny,nz

�y ,z ;x�= 1
l�x�sin�qy�x��y

− l�x���sin�qz�x��z+b− l�x���, where qy,z�x�=�ny,z / l�x�, with
ny,z=1,2 , . . .. The resulting equation for the “fast” motion is

�−
d2

dx2 + vn�
2�x����x� = �̃2��x� , �A2�

where vn�
2�x�=qy

2�x�+qz
2�x�.

Thus, to first order in perturbation theory with respect to
vn�

2�x�, the energy eigenvalues of an electron “trapped” by the
EM lenses inside the conic beam region are given by

�px,n
2 = �2c2�̃2 + m0

2c4 	 px
2c2 + m0

2c4 + c2�2��n/l�2,

n2 = ny
2 + nz

2, �A3�

where px=�qx is the e beam main �longitudinal� momentum
and py,z=��ny,z / l, with ny,z=1,2 , . . . , l=�l0�l0+�L�, its
transverse momentum components in the free propagation
zone outside the EM focusing domain.

This model of the e beam is, of course, a drastic simpli-
fication of the actual focused beam in STEM. In particular
the ideally reflecting boundary conditions, Eq. �A1�, cannot
be strictly realized under the smoothly varying field gener-
ated in space by the focusing EM lenses. The results of our
analysis here are not expected to be very sensitive to the fine
details of the momentum distribution of the beam. We may
take advantage of that by eliminating the specific depen-
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dence of the transverse wave numbers on the average beam
radius l and replace �� / l��ny ,nz� with the general symbol q� tr,
such that the specialized set of eigenfunctions, �ny,nz

�y ,z ;x�,
may be replaced by a more general set �q� tr

�y ,z ;x�.
The relativistic asymptotic �initial and final� energies of

an electron trapped within the beam double-cone boundary
are �i,f

2 =m0
2c4+ �px

2c2+ �2�2n2c2

l2 �i,f = �m0
2c4+ �px

i,f�2c2�+ ��py
i,f�2

+ �pz
i,f�2�c2, where �px

i,f�2= ��i,f
2 −m0

2c4� /c2− ��py
i,f�2+ �pz

i,f�2�.
The corresponding longitudinal momentum transfer is calcu-
lated from

�qx
i − qx

f��qx
i + qx

f� = ��i − � f���i + � f�/��c�2 + ��qtr
f �2 − �qtr

i �2� ,

where

�qx
i + qx

f� 	 2mv/�, ��i + � f� 	 �2mc2� ,

so that

�qx
i − qx

f�2mv/� 	 ��i − � f��2mc2�/��c�2 + ��qtr
f �2 − �qtr

i �2� ,

namely,

�qx 	 ��/v� + ���qtr
f �2 − �qtr

i �2�/2mv .

APPENDIX B

In this appendix, following the method developed in Ref.
14, we consider the dielectric loss function

Im�
rf ,i�kx,ky,��

K� e−2K�b� appearing in Eq. �14� and show that it is

proportional to Re Ex�K� ;−b ;��—the electric-field compo-
nent along the e beam axis at the beam position z=−b. The
latter is the key ingredient in the calculation of the power
loss function in the classical limit. We shall also show in this
appendix that in the long-wavelength limit discussed in Ref.
14, the dielectric loss function reduces to the well known
expression derived in Ref. 15.

Our analysis starts from the expectation value of the four-

vector potential �A�= �� ,−A� ��, given by

A��r�,t� =
1

c
�
�=0

3 

−





dt�
 d3r�D�,��r�,r��;t − t��jext,��r��,t�� ,

�B1�

where jext,��r�� , t�� is the external four-current density gener-
ated by the e beam �with the components jext,�= �c�ext , j�ext��,
and D�,��r� ,r�� ; t− t�� is the “dressed” retarded photon Green’s
function, defined by the correlator

D�,��r�,r��;t − t�� = − i��Â��r�,t�, Â��r��,t������t − t�� .

�B2�

The “bare” four-vector potential is given by

A�
�0��r�,t� =

1

c



−





dt�
 d3r�D�
�0��r� − r��;t − t��jext,��r��,t�� ,

where D�,�
�0� �r� ,r�� ; t− t���D�

�0��r�−r�� ; t− t����,�, is the bare re-
tarded photon propagator in the Lorentz gauge, which is
given by D�

�0��r�−r�� ; t− t��=����t− t����
r�−r��
 /c+ t− t�� / 
r�
−r��
, with

�� = � 1, � = 0

− 1, � = 1,2,3
� .

The corresponding Fourier transforms with respect to the
spatial coordinates parallel to the surface, with wave vector

K� = �kx ,ky�, are

A��K� ;z;�� =
1

c
�
�=0

3 
 dz�D�,��K� ;z,z�;��jext,��K� ;z�;�� ,

and

D�
�0��K� ,z,z�;�� = D�

�0��K�, 
z − z�
� =
��

2�K�
e−K�
z−z�
.

Our explicit expression for the external four-current den-
sity associated with the e beam is

jext,��K� ;z�;�� = �
− ce��z + b���vkx − �� , � = 0

− e��

kx
���z + b���vkx − �� , � = 1

0, � = 2,3.
�

�B3�

For z ,z��0, i.e., both on the vacuum side of the dielectric
slab, occupying the space 2c��z�0, the lateral Fourier
transform of Eq. �B2� can be written in the form

D�,��K� ,z,z�;�� =
��

2�K�� ��,�e−K�
z−z�


− �r�,�
�odd� + r�,�

�even��eK��z+z�� � ,

�B4�

where the generalized reflection four matrices for incident
waves, which are either symmetric or antisymmetric with
respect to the slab center, are given respectively by �see Ref.
14�

r�odd,even� =
1

2
�W�odd,even� − I� ,

W�odd,even� � �U�odd,even� + I�−1. �B5�

�The definition of the matrix U can be found in Ref. 14.�
In the limit of a semi-infinite slab �c�→
�, r�odd�=r�even�

�r, so that

r�,�
�odd� + r�,�

�even� → 2r�,�, c� → 


and

A��K� ;z;�� = −
1

c

��

2�K� ���,0e−K�
z+b
 − 2r�,0eK��z−b��

�ce��vkx − �� −
1

c

��

2�K� ���,1e−K�
z+b


− 2r�,1eK��z−b��e��

kx
���vkx − �� ,

where at z=−b
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A��K� ;− b;�� = −
e

2�K�
��vkx − ��������,0 + � �

ckx
���,1�

− �2r�,0 + � �

ckx
�2r�,1�e−2K�b� . �B6�

To simplify the calculation, we shall consider in what fol-

lows the special case where the wave vector K� is parallel to
the e-beam direction, which was selected along the x axis, so
that ky =0, and K=kx. Thus, the electric-field component

along the e-beam axis at the beam position z=−b, Ex�K� ;
−b ;��, can be calculated from the explicit expressions for
the potentials in Lorentz gauge, namely,

Ex�K� ;− b;�� = − ikxA0�K� ;− b;�� − i��/c�A1�K� ;− b;��

= �− ikx�r0,0 + � �

ckx
�r0,1�

− i��/c��r1,0 + � �

ckx
�r1,1��e−2K�b

= − ikx�r0,0 + � �

ckx
�r0,1 + � �

ckx
�r1,0

+ � �

ckx
�2

r1,1�e−2K�b,

or �by exploiting the symmetry property r1,0=−r0,1,14

Ex�K� ;− b;�� = − ikx�r0,0 + � �

ckx
�2

r1,1�e−2K�b. �B7�

This expression should be compared to the dielectric-
response function

rf ,i�kx,ky,�� = r0,0 + ��qx
i /mc�r0,1 + ��qx

f /mc�r1,0

+ ��2qx
fqx

i /�mc�2�r1,1,

which may be simplified �again due to the symmetry r1,0
=−r0,1 and the inequality 
�qx
	� /v�mc /�� to

rf ,i�kx,ky,�� = r0,0 + �v/c�2r1,1 + ���qx/mc��r0,1 − �v/c�r1,1�

	 r0,0 + �v/c�2r1,1 + ���/mcv��r0,1 − �v/c�r1,1�

	 r0,0 + �v/c�2r1,1. �B8�

Thus, since in the classical limit the prefactor of r1,1 in
Eq. �B7� � �

ckx
�2← → �v /c�2, we find that

Re Ex�K� ;− b;�� � Im��r0,0 + �v/c�2r1,1�e−2K�b� .

Exploiting the continuity equation to connect various
components of the matrix U,14

kxU11− �� /c�U01=−K�U31 and
kxU13− �� /c�U03=−K�U33, and noting the symmetry relation
U31=−U13, it can be shown that

r0,0 + � �

ckx
�r0,1 = −

��/ckx�U01 + U00

2�1 + Tr U�
.

Furthermore, the continuity equation also implies

kxU01 + ��/c�U00 = K�U30 and kxU13 − ��/c�U03 = − K�U33,

so that since U30=U03, we also find that

r1,0 + � �

ckx
�r1,1 =

U01 − ��/ckx�U11

2�1 + Tr U�
.

Consequently r0,0+ �v /c�2r1,1→r0,0+ � �
ckx

�2r1,1

=−
U00+��/ckx�2U11

2�1+Tr U� and in the long-wavelength limit, where 1
+Tr U= ��K�+Q�

2�K� and � is the bulk optical �frequency depen-
dent� dielectric function of the platelet, we find

U0,0 =
�1 − ��

2�
�1 +

��/c�2

2K�2 � , �B9�

U1,1 =
�� − 1�

�

��/c�2

4K�2 �1 + �� − 1�
K�2

�Q + K��2� , �B10�

so that finally

Re Ex�K� ;− b;�� � Im� e−2K�b

K� � K��� − 1�
��K� + Q�

+ �v
c
�2

�� �K� − Q�
�Q + K��

+
�1 − ��K2

�Q + K����K� + Q�
��� ,

which is equivalent to surface dielectric loss function ob-
tained in Ref. 15 by using Maxwell’s equations with macro-
scopic boundary conditions.
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